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Introduction 

Cantor indexes the steps of his construction of ordinals by new 
objects, the transfinite numbers which can be visualized as follows [2, 4, 5, 
9, 10, 13, 22, 23]:  

0, 1, 2, … ω, ω + 1, …, ω + ω … ω + ω + ω, ... ω
2
, … ω

3
 … .  But 

this possesses a problem : how far do we have to go. In fact, Cantor found 
it very hard to define transfinite number, even using the brand-new-and 
controversial-vocabulary of set theory. 

Neumann, Von J. [20, 21] considered ω as an ordinal of second 
kind and is the greatest ordinal among ordinals of the first kind. The symbol 

εo is the least upper bound of the sequence : 1, ω, ω
ω
, 

 … and the 

symbol Ω to represent a well ordered set consisting of all the ordinals of the 
first and the second kinds. In von Neumann set theory the class of all 
ordinals does exist, but it is a proper class and thus can’t be a member of 
itself or any other class.  

R.M. Robinson [17, 22], P. Bernays [2, 21] and K. Godel [9, 10] 
introduced an independent theory of ordinals without referring the definition 
to the concept of order.  

R.N. Lal [19] gave a complete extention of ordinals with non-
commutative operations. The difficulty what he felt in density problem due 
to non-commutativity was resolved through the introduction of ordinal 
continued fraction. His concept of fraction is quite different from that of E. 
Zakon [25]. He introduced ordinal rationals with their incompleteness and 
ordinals reals with their completeness in detail.  

Only a few Mathematicians have worked on lattices infused with 
ordinals.  S. Kuhlmann [18, 19, 25] discovered some conditions under 
which chains can be embedded into ordinals. O. Bernard [1] invested 
regular contexts of ordinal sums and ordinal products of two lattices. In this 
paper we shall form the lattice structures of ordinals. For terminologies we 
refer to the Lattice Theory by G. Birkhoff [3]. 
Ordinal Quotient 
Definition 2.1. Let α ≠ 0 and β be two ordinals .Then we say that α divides 
β (in symbol, α/β) iff there exists an ordinal γ such that β = α*γ. Here γ is 
called the left quotient of β by α and is designated as [β : α]. A non-zero 
ordinal γ is called : 

(I)
  

the hclf of α and β (i.e., γ = α  β) iff γ is the largest left divisor of both 
α and β, i.e. iff γ | α, γ | β and further δ | α and δ | β implies that δ | γ for 
every δ ≠ 0. 

(II)  the lcrm of two non-zero ordinals α and β (i.e., γ = α  β) iff γ is the 
smallest ordinal such that α and β are left divisors of γ, i.e., iff α | γ, β | 
γ and further α | δ and β | δ implies that γ | δ for every δ. 

In the ensuring study we shall assume α as a nonzero ordinal 
number involved in              [β : α] for every ordinal β. 
Theorem 2.1. The quotient formation [:] has the following properties : 

(I) [α : γ]
 
+ [β : γ] = [α + β : γ] 

(II) [β : γ] * [α : β] = [α : γ] 

(III) [2  α : 2  β] = [α : β] 

(IV) [2  α : β] = [α : β] provided α is a limit ordinal. 

(V) [α : α] =1 

Abstract 
In this paper our endeavour is to build up a theory of 

ordinal lattices which emerges from the consideration of extension 
of the relation of divisibility to ordinals. The left cancellation law on 
ordinals leads to the concept of left divisibility, the highest common left 

factor (hclf ()) and dually the least common right multiple (lcrm ()) 
which induces primeness of ordinals and enriches the ordinal number 
theory. We shall determine the lattice structures of ordinal numbers. 
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(VI)        [α : β] = [1: [β : α]] 

(VII)        [β : α]  γ = [γ : [β : α]] = [β  γ : α] 

(VIII)     [[α : β] : γ] = [α : β  γ] 

(IX)         [[α : γ]
 
:
 
[β : γ]] = [(α : β] 

Proof. (I) Put p =[α : γ] and q = [β : γ]  

Then α = γ  p and β = γ  q  

 α + β = γ  (p + q)  p + q = [α + β : γ] 

β = α  γ  [β : α] = γ 
(II) Put p = [α : β], q = [[β : γ]  

 Then α = β  p and β = γ  q  

 α  = γ  q  p  [α : γ] = q  p  

(III) Put p = [2  α : 2  β] 

Then 2  α = 2  β  p  α = β  p 

(IV) The proof is an immediate consequence of the 

fact that 2 =  when  is a limit ordinal. 
(V) Obvious. 
(VI) Put p = [α : β], q = [β : α] and r = [1 : q] 

Then 1 = q  r, α = β  p, β = α   q 

 α = α  q  p  1 = q  p  q  r = q  p 

 p = r 

(VII) Put [β : ] = p. Then β = α  p 

 β  γ = α  p  γ  =   (p  γ)  

 p  γ = β  γ  α 

      Also, [γ : [ α : β]] =  and [α : β] =   

 γ =      β  γ = (β  )     β   γ = 

α    

  = [β  γ : α] 

(VIII) Put [α : β] : γ] =  

 Then [α : β] = γ     α = (β  γ)    [α : 

β  γ] =   
(IX) Put [α : γ] = p, [β : γ] = q and [p : q] = r  

Then α = γ  p, β = γ  q and p = q  r  

 γ  p = γ  (q  r) = (γ  q)  r = β  r  α 

= β  r 

Corollary 2.1. α  β and γ  0 

  [α : γ]  [β : γ] 

Proof. There exists 1 such that  =  + 1 

  [α : γ] + [β1 : γ] = [β : γ] 

  [α : γ]  [β : γ] 
Remark 2.1. In view of the result (vi) of the above theorem we 

may write [α : β] = [β : α]
-1 

= 1[β : α] and that of (IX), [α : γ]  

[β : γ] = [α : β] = α  β. 

Theorem 2.2. (I)  is a divisor of every ordinal of the 

second kind. 

(II) If  and β are ordinals of the second kind and α | 

β. Then there exists a pair of ordinals  and  such 
that one of them divides the other. 
(III) For any two ordinals α and β, 

(α  β)  (α  β)  (β  α)  (α  β) 
Proof. (I) For, if α is an ordinal number of the second 

kind, we can obtain an additively indecomposible 

ordinal    for some ordinal  such that α =   . 

(II) For,  | α and  | β   ordinals  and  such that 

 α =    and β =     

Further, α / β    an ordinal γ such that β = α  γ 

     =        =   γ 

An element α in  is said to be minimal (α min) in 
case 0 < α and there exists no element β such that 0 
< β < α. 

(III) for, {(α  β) α}  { (α  β)  β}  ((β  α)  (α  β). 

The following theorem induces the notion of 

minimal sequence of ordinals. 

Theorem 2.3. If  is not minimal in , then there 

exists an ordinal  such that   2  . 

Proof. If  is not minimal,  1   such that 1 <  

and hence their exists a unique ordinal 2 <  with  = 

1 + 2   +  =   2, where  is defined as the 

smaller of 1 and 2 

Definition 2.2. A minimal sequence (i) of elements 

in  is one containing but one element 1 which is 
minimal, or containing a denumerable infinitude of 
elements such that 

[i+j : i]  2
j
(i, j = 1, 2, …) 

Remark 2.2. There exists a minimal sequence. 

At this point we fix attention on minimal 
sequence. 

Lemma 2.1. If   . Then  lim :i
i

 


  in the 

case minimal sequence is infinite. 
Proof : We have by the theorem (2.1)(II) 

[ : i] = [i+1 : i]  [ : i+1]  2  [i : i+1]  

By the induction 

[ : i+j]  2
j
  [ : i+1] 

Putting i = 1 and j = k – 1  

[ : k]  2
k – 1

  [ : 2] 

Therefore  i0 such that 

 

0

0

1
[ : ] 2

lim :

i

i

i
i

 

 







 
 

Theorem 2.4. Let   0,   0 be given. 

Then    lim : / :i i
i

   


 exists and is > 0, 

<  (If (i) consists of one element 1 min, we mean by 

lim
i

 the value at i = 1). 

Proof. (I) Let  = 1 be minimal. Then 1  0 and  = 1 [ : 

1].  

Now [ : 1]  0, since   0 and similarly  = 1  

[ : 1] whence [, 1]  0. 

Hence 
 
 

 
 

1

1

: :
lim

: :

i

i
i

   

   
  exists and has the 

desired property.  

(II) Let (i) be infinite and minimal. Then by Theorem 2.1(II) 

[ : i+1] = [i : i+1]  [ : i]  [i : i+1] + 1)  ([ : 

i] + 1)  

[ : i+1] = [i : i+1]  [ : i] 
Therefore,  

 
 

 
 

 
 

 
 
 

 
 

 
 

1 1 1

1 1

: : 1 : 1
*

: : :

: 1
1 2 *

:

: 1
3*

:

: 1

:

i i i i

i i i i

i

i

i

i

i

i
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Therefore, 
[ : ] [ : ] 1

lim
[ : ] [ : ]

i j i

i
i j i

   

   







  

That is  
[ : ] [ : ] 1

lim
[ : ] [ : ]

k i

k
k i

   

   


  

So that 
 

[ : ] [ : ] 1 [ : ]
lim lim lim

[ : ] [ : ] [ : ]

k k i

k k i
k k i

     

       


   

Since 
1

[ : ]i 
 tends to zero by the lemma 

2.1. But this implies the existence of desired limit. This 
is finite also since this is less than or equal to 

[ : ] 1

[ : ]

i

i

 

 


 and since this is finite if i is sufficiently 

great. Since the same reasoning applies to the 

reciprocal 
[ : ]

[ : ]

i

i

 

 
, this fraction has also a finite 

limit. Hence the limit of 
[ : ]

[ : ]

i

i

 

 
 exists. This 

completes the proof. 
Remark 2.3. The finite limit obtained above 

represents an ordinal real number. 

Definition 2.3. If   0,   0, we define  

( : ) lim[ : ]/[ : ]i i
i

     


  

Theorem 2.5. Let , , γ are different from 0. Then 

the following results hold: 

(a) (, ) =1 

(b) ( : ) = ( : )
-1

 

(c) ( : γ) = ( : γ)  ( : )  

(d) ( +  : γ) = ( : γ) + ( : γ) 

(e)  >   ( : γ) > ( : γ) 

Proof. (a) This is obvious, since [ : i] / [ : i] = 1, 

for sufficiently large i,  
(b) 

  

 

 
(c) 

  

 

 
 

(d) (I) Let l be minimal, and put p = [ : 1], q = [ : 

1] and s = [γ : 1].  

Then  = 1  p,  = 1  q, γ  = 1  s  

  +  = 1  (p + q)  [ +  : 1] = p + q  

and  ( +  : γ) = [ +  : 1] / [γ : 1] = p + q / s = 

p / s + q / s = ( : γ) + ( : γ) 

(II) Let i be infinite (i = 1, 2, 3, …). Then by the 

theorem 2.1(I) 

[ : i] + [ : i] = [ +  : i] 

If we divide by [γ : i] and let i tend to infinity, 

each term has a limit and from which (d) follows: 

(e) There exists 1 with  =  + 1 and 1  0  

Then ( : γ) = ( : γ) + (1 : γ) > ( : γ) 
3. Lattice ordered binoid (lobinoid) [12, 13, 14, 15] 

In this section we shall study the lattice 
ordered structure of the set of nonzero ordinal 

numbers: , , γ, … 

Lemma 3.1. The relation of divisibility () partially 

orders the set  of non zero ordinal numbers with 

respect to which the monoid (, ) is left ordered. The 

poset with hclf () and lcrm () is a lattice. 

Proof. (I) That  is a porelation and helf and lcrm are 

lattice operations are obvious. 

(II)    (i.e.  | )   an ordinal γ such that  =   
γ  

    =   (  ) 

= (  )  γ =        |  . 

Theorem 3.1. The set (, +, ) is a lobinoid. 

Proof :  (, +, ) equipped with associative binary 

operation is a bisemigroup with the property : n +  = 

n =  for every ordinal n of the first kind. Thus the 

existence of a common natural element  for both the 
associative binary operations together with the lemma 
3.1 yield the proof of the theorem.  

Definition 3.1. An ordinal number  is said to be even 

iff 2 | ; odd, otherwise, prime iff for every ordinal 

number γ either  | γ or hclf (, γ) = 1. Two ordinals  

and  are said to be co-prime iff hclf (, ) = 1. 

Example 3.1. An initial transfinite ordinal number  is 

even whereas  + 1 is odd and they are prime. 

Further  is prime. 

Solution. Since   = 2   and   + 1 = 2    + 1 
Remark 3.1. Since every ordinal can be represented 

either as 2   or as 2   + 1, each ordinal number is 
either even or odd, for example 

( + 1) 2 = 2  ( + 2) + 1 is odd. 
The Fermat’s factorization method (i.e., an 

odd number can be factorized iff it is a difference of 
two squares [6, 14, 15, 16]) fails for ordinals, since 


n+1 

=
 


n
   = 2  

n 
  is an even ordinal 

and  


n+1

 = (
n 
 )

2
 – (

n
)
2
 

 Again 
2
 has 

infinitely many such 

representations: 
2 

= [(  (n + 1)]
2 
 

– [  n]
2
, for   n = 1, 2, … 

    Moreover, Goldback hypothesis (i.e.,           
every even natural number > 2 is the sum 
of two prime numbers [23, p. 21]) is also  

false for ordinals, for  + 10 is not such a  
 
 
 
 
sum. We have the following extension of 
the familiar factorization theorem for finite 
ordinals : 

Theorem 3.2. Every ordinal  > 1 which is not itself a 

prime, is a product of a finite number of primes, 
sometimes in more than one-way. 

Proof. There is a least ordinal  > 1 such that  = 1  

, where 1 < 1 < . If l is not a prime, the argument 

may be repeated on 1. Since a decreasing sequence 

 
1 1( : ) lim[ : ] /[ : ] lim [ : ] /[ : ] ( : )i i i i

i i
           

 

 
    

   ( : ) lim[ : ]/[ : ] lim [ : ]/[ : ] * lim[ : ]/[ : ] ( : )*( : )i i i i i i
i i i
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of ordinals must be finite, we have the desired result. 
As an example of non-uniqueness we may 

cite: 


2

 = ( + 1)   = ( + 1)  2   

 = ( + 1)  3  2   = 5  ( + 1)  7   
etc. 

One of the most important concept in  is 
that of residual. Historically speaking it draws primary 
inspiration for the work M. Ward and R.P. Dilworth 
appearing in a series of important papers [6, 7, 8, 16, 
23, 24]. Our study is naturally based on non-

commutative case. The right residual  :  of  by  is 

the largest γ such that  * γ  . A right residuated lattice is 
an l-groupoid (Lattice-groupoid) in which right residual 
for every pair of elements exists [3]. 

Theorem 3.3.  is right residuated. 

Proof : For ordinals  and  in  there exists a unique 

ordinal γ and a unique ordinal  <  in  such that 

   =   γ +     γ   
Remark 3.2.  From the lemma 3.1 and the theorems 

3.1, 3.2 and 3.3 it follow that  is a right residuated 
lobinoid. 
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